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ABST_ACT

In this paper we discuss the origin of the quasi-stellar objects from ,

two different points of view: (i) that they are objects al;cosmological

distances as has been commonly supposed, and (ii) that they are local obje:ts

situated at distance _ 1 - l0 Mpc. In the introductory section the optical

properties of the quasi-stellar objects ar_:compared with the optical properties

of galaxies associated with strong radio courses and Syefert nuclei from both

points of view. Section II is devoted to a d.Lscussion of (i) and on this

basis it is argue_ that they are most probably the nuclei of galaxies which

have reached a high density phase at which time the formation of me_sive

objects and their subsequent evolution has occurred.

Apart from the suggestion of Terrell little atr.entionhas been paid until

now to the possibility that they are local objects and so we have considered

this in considerable detail. A plausible case can now be made for supposing

that they are coherent objects which have been ejected at relativistic speeds L

from the nuclei of galaxies at times when they erupt to give rise to strong

radio source_ and other phenomena. On this basis a likely candidate to give

rise to the objects in our vicinity is NGC 5128 which is a po_erft.1 radio source _

in which at least two outbursts appear to have occurred. In this case some

objects with blue shifts may be present. The fraction of such objects and the

solid angle about NGC 5128 in which th_y lie is given as a fm,ctiou of the

distance of NGC 5128, average speed of ejection, and time which has elapsed

since the explosion. Calculations are also made of the red-shift magnitude ;_

relation to be expected in the local theory and comparison is made with the

relation in orthodox cosmology.

Some of the problems associated with the _47Potheslsthat the objects lie

at cosmological distances have arisen through the observation of Dent of the

- _ -
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]adio emission from 3C 273B. This shc_ that at 8000 Mc/s the intensity has

increased by about 40% over the last two year:;,and that the spectrum is flat

over the range 200 Mc/s to 8000 Mc/s and may l.e flat over a wider range. It

is showm that a model based on the synchrotror process is able to explain the

form of the spectrum with the object at a cosmological distance provided thatI

the following conditions prevail: (1) the electron distribution is optically

thin; (2) the magnetic field intensity depends on distance r from the center

with the form H = Ho(a/r)n; (3) the electron ener_j spectrum is everywhere the

; same; (4) the energy density of the electron distribution is of the form

W = Wo(b/r)m; (5) n + m = 3. Even with this model there is considerable

difficulty in explaining a flat spectrum beyond lO_ Mc/s. The difficulties

associated with the model are somewhat reduced in the local theory.
I

!
In the concluding sections a number of programs are outlined which may

enable us finally tO determine whether the objects are at cosmological distances

or are local.

I
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I. 1]_RODUCTION

Of the sample of rather more than i00 radio sources for _hich optical

identifications have Oeen made more than 30 have turned o_ _ to be a._sociated

with star-like objects. Because optical identifications a-.cconfined to

sources for which good radio position measurements have been made, and because

good position measurements so far exist only for the brighter sources, it was

thought until recently that data concerning these star-like objects could only

be accumulated 2_ther slowly. However, Sand_ge (1965) has begun to identify

star-like objects which are not associated with the brighter radio sources. .

S_dage has described the objects as quasi-ste_!ar galaxies but in this paper

we shall prefer the term q_si-stellar object since at this stage we do not

think enough is known about their nature foz a definitive name to be chosen.

Indeed it is the purpose o_ this paper to discuss the ambiguities of inter-

pretation of the quasl-stellar objects.

The new work of Sandage follows pioneering investigations by Humason,

Zwicky, Haro, and Ltkvtenon faint blue stars at high latitudes. It gives

support to the view that quasi-stellar objects may be rather common - the

at present rather poor statistics Inaiczt_ _s many as _ 4 objects per square .,

deg_e of sky, giving a total of _ 1.5 x l05. This implies that if the quasi-

stellar objects are at cosmological distances their spatial density is about

0.01% of the density of galaxies. If the objects are closer than cosmological

distances, their density is of course correspondingly greater. The new objects

are radio quiet in the sense that if they are radio sources the flux at the
?

Earth must be less than l0"25 W/m2/c/s at 178 Mc/s.

The quasi-stellar objects have been associated with galaxies for two

reasons. Lines in their spectra show red-shifts similar to the cosmological

-3-
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red-._hiftfcr galaxies, and those objects which are strong radio sources

4
•. turn out to have intrinsic radio luminosities that are comparable _ith the

intrinsic luminosities of strong radio galaxies - provided the red-shiT,s

are interpreted cosmologically. However, both of these pieces of evidence
"" 7

are circm_tantial. There is little or no direct evidence to connect quasi-

' stellar objects with galaxies, indeed there is some evidence for an anti-

._ correlation, for so far no quasi-stellar object has been found in a cluster of

!

galaxies. The optical cbject associated with 3C 273 has an apparent magnitude

of about 12.8. If"3C 273 were in a cluster of galaxies, the galaxies would

ha_e apparent magnitude about 18 and would easily be observed. Trnered-shi_s

for 3C 48, 3C 47, and 3C 147 are 0.367, 0.425, and 0.545_ and at the cosmo-

logical distances indicated by these shifts galaxies would probably have been

: detected if these objects were in clusters. The shifts for 3C 254, 3C 245, ::

CTA i02, 3C 287, and 3C 9 (Schmidt 1965) are so great that if any galaxies _;

were associated with these ob.Jectsthey ould be beyond the plate limit. Of

the three new objects reported by Sandage, two have small red-shifbs and

e.zsoci_te_g_laxles, if there were at,y, would be readily observed. On the

whole therefore the evidence is agalnst quasi-stellar objects being correlated _

spatially with galaxies. It is to be anticipated that any remaining s_r.biguity _

in this question will soon be eliminated. _.

It is our purpose in this paper to discuss .,hefurther consequences of )

supposing

(a) that the quasi-stellar objects are at cosmological distances,

(b) that they are extragalactic but of local origin. :

In Sections Ii and III we discuss the qualitative implications of (a) and (b)

respectively, while in Sections IV and V we shall be concerned with _ore

quantitative problems, in particular in Section IV with the question of "Jmether

HI n m i m m m
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the observations of Dent (1965) off a variation in _he intensi_y of %he "_:_"

frequency _adio emission from 3c 273B throws light on the nature of this object.

II. QUASI-STELLAR OBJECTS AT COSMOLOGICAL DISTA_NCES

To avoid pedantry, we shall drop .he conditional 'if at cosmological

distances' clat'_e and will write in this section as if the quasi-stellar

objects were known to be at cosmological distances - the conditional clause

obviously applies to the whole of this section. However, certain of the

properties of quasi-stellar objects, briefly reviewed b.._low,apply also to

the conditions of Section III. These will be indicated by an asterisk. Following

this review we shall consider three theories which have been proposed to explain the

nature of the objects.

First, we note three properties which distinguish the quasi-stellar

objects from normal ga±axies.

(1) Optically, the quasi-stellar objects are up to 400 times brighter than

the most luminous galaxies. All of the quasi-stellar radio sources for which

red-shifts are ava._lable have absolute magnitudes in the range -24 to -26, como i

pared to -21 for the most luminous galaxies. Two of the three new objects

observed by Sandage have small red-shifts and the absolute magnitudes are near

-21. Hence the quasi-_t_llar objects cover a range extending upwards by 5

magnitudes from normal galaxies.

(2)* The obJect_ are all exceedingly compact. In the majority of cases they

are indistinguishable from stars on direct plates, although in one of Sandage's

new cases the object shows a fuzziness that distinguishes it from a stellar image, i

On the cosmological hypothesis, this set._ a l_mit to the size of the optical

object at about i kpc for the nearer systems and abou_ 3 kpc for the more distant

_ objects.

- _ -
,i _ ,, i f jJH ,ll,m
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A more powerful limitation on the sizes of the objects comes from variation

in the optical brightness. In all cases in which repeated measure_mentshave

been made of the objects associated with radio sources variations in i,-'_

been seen or suspected. This means that a major part of the l_minosity in

such objects must come from a source that is at most only a few parsecs in

extent.

(3)* The optical radiation emitted by these objects is not radiation from

ordinary stars. The continuum is almost certainly a mixture of radiation fromm

a hot diffuse gas w_th a nor.-thermal component, possibly synchrotron radiation.

The emission lines are also those characteristic of a rather highly excited gas

(Gre_.nsteinand Schmidt 1964; Schmidt 1964; Sandage 1965).

• In contrast to these differences, certain interesting similarities e_,erge

when quasi-stellar objects are compared with abnormal galaxies.

(4)* Thc emission lines in the spectra of quasi-stellar objects have widths

which indicate large random motions in the emitting gas, _ IOO0 km/sec. This

._ is also a characteristic property of the spectra of the :_ucleiof Seyfert

galaxies. In a general way, the latter also have tb_ properties (3)*, although

_.c emission lines are stronger relative to the _ontinuum than is the case in

q_si-stellar objects.

The nuclei of Seyfert galaxies are _own to be compact. Their stellar

apoearance on direct plates sets a 1._nitof about 50 pc to their sizes.

• Evidently, there is more than a superficial resemblance between such nuclei and

the quasl-stellar objects. We can perhaps venture the predictions

(i) that the colors of these nuclei will turn out s_-milarto the quasi-

stellar objects,

, (il) that light variations will be found.

-6-
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(5)* A jet emerges from 3C 273B which is similar to _he je_ emerging from the ,,

nucleus of M 87_

(6)* The radio source 3C 279 has two components sep, .by _ 20". _ne

optical object a_sociated with 3C 279 lies on the line connecting the two

components (Veron 1965). This is similar to the situation in many zadlo

galaxies. In this respect also the center_ of galaxies appear to play the same
m

role as quasi-stellar objects.

(7) The linear size associated with 3C 47 is of order 200 kpc or more, which

is comparable with the sizes of large radio galaxies.

(8) The radio emission from the quasi-stellar sources is., lO44 erg sec-1,

comparable with the strongest radio galaxies
m " gm

(9)* The N-type radio galaxies have star-like nuclei outside which faint
m

features can be seen _atthews, Morgan, and Schmidt 1964). Like the fuzziness

associatea with 3C 48 these features could be due to a jet, or a series of jets3

emerging from the nucleus. •The compact galaxi_-aLeF._;ibedby Zwicky (1964)

could be a similar phenomenon. Poss.iblyCyprus A should also be included in

this category - i.e., of galaxies ha_rizg featu:es in common w_th :_ua_i-stellar

objects. The extent of the region _iving emission lines in Cygnu_ ....:_as

dimensions of _ 6 k-pc,the absolute magu±tude is about -21, and t_ _,ission

lines in th__,3system are very strong.

We are strongly impressed by items (i_)*to (9)*, which s_em _ . us to

indicate a close connection between the pnyslc_,__.rocesses ],. ,_si-stellar

objects and those which take place in the nuclei of some ga!_xles. It mus_ be

emph_.sized,_owever, that item (1) remalns a major and critical difference. _ne

absolute magnitudes of the nuclei of Seyfert galaxies are about -18, a thousand

times fainter than the most luminous quasl-stellar objects. This difference i_,

unavoidable so long as we accept the cosmologlcal interpreta ion of _he red-shi_s.

m | u ,,
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We are,_then dealing with a phenomenon in ,;hic_the optical output ranges from

i0_2 erg sec-I to _ 1046 erg sec"I and in which the emission comes from a

volume cf only a few cubic parsecs. This and the :'_cttluatthere is no evidence

! of any stellar features in the optical spectra place important constrai ,ts on

any theo_7 which interprets the quasi-stellar redshifts as cosmological. If

normal stars exist in the qu_.si-stellarobjects t_,ey are completely overborne

in luminosity by the continuum of thermal and non-thermal orig_n emitted by a

hot plasma. _

We turn now _o three theories which have been put fo_-ard. Field (1964) _

has suggested that the objects are galaxies in the process of formation and _

i--Sandage (1965) has supported this point of view. The difficulty in this theory

is to understand the slmilarJties between the newly forming galaxies and the _

nuclei of old-established galaxies. Although we are not unsympathetic to the _

idea of newly forming galaxies (Burbidge, Burbidge, and Hoyle i963), we have _

not so far been able to understand how items (4)* to (9)* can be _derstood in

this theory.

A far more radical theory is that both the quasi-stellar objects and the

nuclei of some g_laxies are relics of a high density pha_e of the whole Univelse.

Many cosmologists are attracted by an oscillating model for the Universe. The

critical problem in such a model is to explain why the Universe _witches from f_

contraction to expansion. In the model of Hoyle and Narlikar (1965a) the s,'tch

is explained wi_h the aid of a new field, termed the C-field. So far no strict _

mathem_tica± explanat'_,_has been given within the usual framework of cosmology;

the switch is simply assumed. Granted, however, that a switch takes place in ,<:

some fashion, it is reasonable to argue that if the whole Universe can 'bounce' _;i

so c_u a localized object. The time scale for the bounce of a localized object

is not the same for a distant observer as it is for an observer moving with the _

1965026885-010



object. _ne former is greater than the latter by a dilatation factor,

(1 - _)-2 where _ is the largest value of the relativistic parameter, 2 &V,/R

for a mass point in the usual Sch_arzscnild theory, attained during tPe

oscillation. If _ comes exceedingly near unity, as it can do in the theory of

Hoyle _id Narlikar, _his dilatation factor can greatly exceed the osc±Tlation

tL_ scale for a com_ing observer, indeed, the time scale for the exte_al

observer could be as long as l0lO years, so it would be possible for us to see

localized objects emerging from a highly relativistic situation.

Ulam _,d _l&en (1964), Gold (private communication), aud Woltjer (1964)

have all noticed that the star density is high near the centers of galaxies.

They have suggested that star colllsion_ may be frequent enough to produce

appreciable optical emission. Acceleration uf particles to cosmic ray energies

in a rapidly moving gaseous assembly might be responsible for the radio emission.

Similar ideas have also been suggested by tmese authors for the quasi-stellar

objects.

Tn_ Wo:_ez_ceof any deSectable stellar component in the spectra of the

qur_i-stellar objects casts doubt on this theory, at any rate on the idea that

the optical emission arises from star collisions. It was also pointed out by

Hoyie (1.964)_hat th_ _ime variations in the optical emission of 3C 273 cannot

be explained in _erms of star collisions. It would seem, therefore, that a

more hopeful line of attack wvuld be to argue that star collisions are responsible

for producing a massive object of the kind first discussed by Hoyle anl Fowler

(19_3), and that both the optical and radio properties are controlled by the

massive object. .The further evolution of such an object has been studied by

Hoyle and Fowler (1965) and by Fowler (1965).

This latter fo_ of the third theory is perhaps the most conservative

attack on the problem. The main difficulty in the theory is to understand how

1965026885-011
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the star density can become high emoug_,to produce arLvappreciable development

. through the mechanism of star collisions. A qualitative discussion of this

o2aestionhas been given by Gold, Axford, and Ray (1965). Preliminary calculations

by Ulam and Walden (1964) indicate that collisions will incl_'aserather rapidly

if the star density exceeds 106/pc 3, and that the process becomes essentially

catastrophic at a density of 109/pc3. These valaes may be corn;arealwith the

star density at the center of M 31, _ 103/pc 3. Nothing is known about the star

density at the centers of other more distant galaxies.

The difficul%y can be understood in more general terms in the following

way. Divide the inner regions of a galaxy into a large number of small volumes,

say the region within 100 9arsec of the center in to a million eq,,_lcells.

Take the time average of the stars, and of their motions, within each cell -

i.e., attach an observer to each cell and let him observe the stars that pass

through his indi%Idual cell. Why should one particular observer, the one

associated with a cell at the geometric center of the galaxy, obtain a result

substantially dlffem_nt from any other observer? _at distinguishes the center

as a singular point? We believe these questions to be unanswerable, and the

theory to be consequently untenable, if the nuclei of galaxies have condensed

by contraction from a diffuse gas, in accordance with the usual _icture of their

origin. In such a picutre we would expect the stars to ha_ sufficient angular

momentum about the geometric center for one cell in our imaginary model to be

indistingaish_;olefrom another, at any rate over the first l0 to 100 parsecs

from the center.

An alternative suggestion for the origin of the nuclear regions of galaxies,

and for the elliptical galaxies as a whole, has recently been put forward by

Hoyle and Narlikar (1965b). In their oscillating model the expansion phase

takes place nearly as in the Einstein de Sitter cosmolosy. The latter is a

1965026885-012



l-.'.T.itingcase in the sense that comparatively s_ll inh0mogeneities can

restrain expansion over limited volumes. It was suggested that elliptical

galaxies are such restrained volumes possessing mass concentra_.ions at their

cen_e_ss the mass concentration at the center of a massive elliptical being

[09 M@. On this basis it is possible to derive theoretically the form of

the light distrib_xtionwithin ellipticals. This turns out in very good agree-

ment with the observed distribution, suggesting that the expansion picture may

' well be correct. If so, the center is singular from the origin of a galaxy,

it does not have tb develop. The center can have an initial density comparable

to the mean density of the Universe at its most compact state. The most suitable

criteron for determining this density numerically is from a comparison with

observation of the formula

2 c (Gp) (1)
C

where_f_ is an upper limit to the total m&ss of clusters of galaxies. Here

(G_ _ is the unit of time associated with the required mean density p. The

right hand side of (I) is therefore of the order of the dimensions of a length,

L say, and (1) expresses the theoretical result that the relativistic parameters

associated with _ and L, 2 G _f_/c2L, must be of order unity. N_mericall_3

(1) leads to

4"i°8P½ (2)

If we set _ equal to _he mass of a typical cluster of galaxies, _ 1013 M®,

(2) gives p _ i0"9 gm cm"3, which is close "tothe value used by Hoyle and

Narlikar. However, it is possible that _r_ should be set equal to the masses

of the largest clusters, _ l015 M_ in which case p -_10"13 gm cm"-3. The

latter value is close to what would ue required to give _ 109 stars per cubic

- ll -
i i ,, i . i. .......
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parsec. Although there would be some reduction of density due zo expansion,

an iniLial value equivalent to between iO ° and ]0 9 stars/9_. 3 is en_ireTjf possible.

On this basis elliptical galaxies, and perhaps some spirals, are born

" with their nuclei aL_ady at the critical density necessary Cor the development

of massive objects. It is likely that violent events in which material is

. thrown out of the nucleus early in the histcrg of sue::galaxies lead to a

quasi-equilibrium in which the nucleus is always close co instability - i.e.,

to a further outburst. The occurrence of an outburst would be expected to

stabilize the sitdation for a while, until further evolution eventually brings

on a new uatburst, or until the whole inner dense nucleus has been dissipated

and the galaxy becomes finally inactive.

Of the three theories mentioned or discussed above the third seems to us

in many ways the most attractive for the case of radio galaxies. For the quasi-

stellar objects the third theory raises am awkward problem, however. Because

of the similarities between quasi-stellar objects and radio galaxies we are

loath to accept a quite different theory for the quasl-stellar objects. Ye_

if we suppose the latter to be massive objects situated at the centers of dense

star systems we are obliged to ask what star systems, in particular what star

systems can we have that are not associated with clusters of galaxies? A _"
%. ,"

possible s.uswerwould be the dwarf elliptical galaxies which probably have a

high spatial density, existing in pro_asion as fiel'.dgalaxies. The mystery

then is why dwarf ellipticals can set up objects with a far greater optical out- L_

put than the objects which develop at the centers of massive ellipticals The
%

natural expectation would be to have things the opposite way around.

|

[

18a, m , t
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iII. QUASI-STELLAR OBJECTS AS LOCAL PHEN&'_NA

_ne.e is no question in our minds but that the line shiz_s which have

been measured in the quasi-stellar radio sources and the objects studied by

Sandage are Doppler shifts. The case against them being gravitational in

origin has been made in detail for 3C 273 and 3C 48 by Greenstein and Schmidt

L96*j an4 in our view it is overwhelming, if the objects are local Jr.is

_h_refoze necessary to explain how velocities nearly up to c, relative to the

usual standard of rest, have been derived. This is the immediate problem which

any local theory has to face.

The minimum total energy necessary to explain the emission from strong

radio galaxies is of order l060 erg. This value is calculated on the basis of equi-

partition between the total energy of the magnetic field and the total energy

of the synchrotron electrons, protons being assumed absent. Allowance for a

deviation from equipartition and for protons makLng a dominant contribution to

the energy could readily raise the requirement to lO62 erg. Hence we already

. know that l060 - lO62 erg is involved in the outbursts of strong radio galaxies.

The energy distribution of the relativistic particles, if it is at all like

normal cosmic rays, is such that the main contribution to the total energy comes

from particles with individual energies not much above 1 Bey T lO-3 erg. It

seems then as if we are involved in l063-- l065 particles moving at speeds com-

parable to c. This corresponds to a total ma_.sof 106 to 108 M® moving at

relativistic speed. It is clea:_lypermissible therefore to argue that a mass

of the general order of lO7 M® :Lsejected at relativistic speed from a strong

radio galaxy and it is on this ;hat a local theory for the orig_ of the quasi-

stellar objects must turn.

It has been customary to t%ink of the matter ejected from radio galaxies

as a diffuse cloud of separated particles. What we have now to consider is

i i i] i 11 i "_ ILJ ii i _ ii i i , i= =
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-thepossibility that in addition to a diffuse emission J_-___ may also be an

ejection of compact objects, and that such objects make up an appreciable

fraction of the ejected material. In several respects it is easier to under-

stand the observational data in _hese terz_. If a single object breaks

explosively in to two objects, the two c;bJectsmust fly apart in opposite

directions_ agreeing immediately with the characteristic property of radio

galaxies, that they tend to be double and that the join of the two sources

tends to pass through the center of the associated galaxy. A phenomenon such

as the jet of M 87 "would seem to be more readily understood if a series of "

compact objects exists along the line of the jet. Otherwise it is hard to

see why radial lines of force of a magnetic field should be confined to a jet.

Also numerous condensation knots appear to exist within the Jet.

Rather than suppose the nucleus of a galaxy to eject a large number of

compact objects, it is possible that the number of objects grows by repeated

subdivision. First there are two major objects, then each of these objects

breaks in to two, and so on in a cascade process. The number counts which

Sandage has made from the Haro-Luyten catalogue of blue 'stars' suggests the

operation of some controlled break-up process. Write N(m) for the number of

objects brighter than magnitude m. Sandage finds d log N/din= O.383. We

obtain substantially this relation from the following postulates:

(i) The objects have expanded out from a local source and are now approximately

_, isotropically distributed with respect to the Galaxy.

(ii) The total mass of the objects within unit logarithmic interval of mass is

constant.

(iii) Postulate (il) applies not only to the total distribution of objects but

at every ejection speed.

(iv) The optical outpu_ of an object is proportional _o its mass.

o
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The second postulate requires the number of objects with masses between M and

M _ _M to be proportional to dM/M2. Using (iv) the number with intrinsic

l_minosities between L and L + dL is proportional to dL/L2. If all the objects

are at the same distance, as those with a particular ejection speed are in

view of (i), the number with apparent luminosities between S and S + dS is

proportional to dS/S2 and the number brighter than S is proportional to 1/S.

If this is true for every ejection speed it is true for the total distribution

of objects. Writing N(S) for the number brighter than S,

log N = -'logS + constant = 0.4 m + constant (2)

and d log N/ dm = 0.4.

The inference from the counts, that postulate (li) may be true, has an

important application, for it means that the total mass requirement is

where Max is the maximum mass to be found r_nongthe objects, and M in is the

minimum mass. Since the logarithmic factor is unlikely to be m:_ch greater

than 10, the mass requirement is not more than _ lO Max , so that the most

massive and brightest object can contain as much as teu percent of the total

mass. With -_ l07 M® for the latterj we can ha_e a maximum object mass of

106 M®" Since our distribution requires the number of objects more massive

than M _o be proportional to Max , we have

1 object with mass M
max '

l0 objects with masses > 0.1 M
msD_ '

100 objects with masses > 0.01 M

and so on.

_le advantage of the local theory is that it relates the properties of

quasi-stellar objects immediately _ud directly to the radio galaxies. They are

of the same stuff, with a similar structure, to the objects giving rise to the
k
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f,roper-_iesof the radio galaxies. Similarities_ such as items (4)* to (9)* of

Sec_ion if, become much more readily understandable.

m__ o possibilities arise in the local theory for the source of the quasi-

s_eiiar objects. Terrell (196q) has suggested that the objects have been ejected
g

_ from _he nucleus of our own Galaxy and he has pointed out that Burbidge and

Hoyle (1963) pioposed an explosion ir_t_c galactic nucleus in order to explain

the existence of a transient halo and the outflow of gas in the plane of the

Galaxy. According to Burbidge and boyle the explosion occurred about l0 million

years ago. Hence "ifwe take c/3 as the cha_ac_eristi_' _'jectionspeed of the

_ objects their present distances should be about I Mpc_ Since the ch_rscteristic

distance of the objects on the cosmological picture is _ l0B Mpc, energy require-

lO6ments are reduced by a factor _ . The optical emission of 3C 273, instead
!

of being _ l046 erg sec-1 1040 -1._ , becomes _ erg sec , and the total emission over

l0 million years is _ l055 erg. Because 3C 273 is probably one of the brightest

of the quasi-stellar objects (intrinsically) the total energy requirement is

greater than lO55 erg by only one or two powers of 10, say lO57 erg, which is

not much different from the energy output suggested by Burbidge and Hoyle.

, The second possibility is that the obJect_ have emerged from a powerful

radio galaxy in the n:i_borhood of the Galaxy. The galaxy NGC 5]28 is an

immediate suggestion, because NGC 5128 is known to have undergone two major

outbursts in the las_ few million year_. Taking l0 Mpc as the characteristic

distance in this case, the total energy requirement is increased to -_l059 erg,

equivalent to the rest mass energy of--l05 MQ. This also is consistent with

what is thought to have been involved in the outbursts of NGC 5]28.

_._ If the objects come from the Galaxy no cases showing a Doppler blue shift

,, are to be expected. If the objects come from NGC 5]28 there is the possibility

that some slowly m_ting objects sti_l.llebetween the Galaxy and NGC 5128. These

i
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would show a blue shift. Consider objects to have been emitted isotropically

f_'omNGC 5128 with speed v a time _ ago, and let D be the distance between

](GC5128 and the Galaxy. Evidently vT/D is dimensionless. The fraction of

objects showing blue-shift is 0.5 (i = v_/D) if v_/D < I and is zero otherwise,

and in the case v_/D < 1 the blue shifted objects are found in a solid angle
i

centered on NGC 5128. For v_/D small, approximately half of the objects

have blue shifts but on the sk_ they are concentrated closely around NGC 5128,

e.g., v_/D = 0.1 gives 45% blue shifts but the solid angle about NGC 5128 is

only 0.031 steradian. As v_/D increases, so does the solid angle but the blue-

shifted fraction decreases, e.g., v.-/D = 0.6 gives a solid angle of N 1.25

_teradian but the fraction of blue-shifted objects has fallen to 20%.

Taking l0 Mpc as the characteristic distance, say for v = c/2, we require

T -_60 million years for the time tha_ has elapsed since the relevant explosion

in NGC 5128. The distance D is rather uncertain, 4 Mpc is the current estimate.

With these values we have vT/D = 0.6 for v =_0.1 c. Blue shifts of thib amount in

directions toward NGC 5128 could confirm this theory. Absence of blue shifts

would go a long way toward disproving It_ although _t may be possible to

increase _/D sufficiently for only very small shifts to be permitted and there

could be a paucity of slowly moving objects.

It is a point against obJect_ from NGC 5128 that • must be taken at least _

as great as _ 30 million years if the objects are to appear approximately iso=

tropic when viewed from the Galaxy. This is longer than the time which has

elapsed since the first of the two known explosions in NGC 5128, assuming the

latter to be given by dividing the dimension of the extended radio source around

NGC 5128 by the velocity of light. Possibly the extended source is no longer

\ .....

iii u i i i i f , i i i . i i i. ii 111.1 uu i
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expanding at appreciable speed, in which case the elapsed time since the first
2:

outburst could be N 30 million years in consonance with the present requirement.

Alternatively it seems possible that NC-C5128 has undergone a euccession of
.,

; explosions before the one which gave rise to the extended r_dlo source _rhlch
4

we see at present.

.; Finally, we notice that the characteristic distanees given ab.y,'e, _ 1 Mpc

for objects from the Galaxy, _ l0 Mpc for objects from NGC 5128, are so great

that proper motions must be vew small. For example, an ooject at lO Npc with
i!

transverse motion @.l c would have a proper motion less than O.001 /yr. Estl-

mates by Luyten (1963) and by Jeffreys (1965) place the proper motion of 3C 273

et less than 0.O1 /yr (Luyten) and less than _ 0.0025 (Jeffreys).

IV. SYNCHROTRON EMISSION BY 3C 273B

The recent remarkable observation by Dent (1965) of an increase in the

intensity of 3C 273B, by about 40% at 8000 Mc/s over the past two and a half

years, has an important bearing on the theories discussed in the two proceeding

sections, particularly on the cosmological theory. At 8000 Mc/s the emitting

region c_nnot be much larger than a few parsecs, say < _ 3 parsec. In the

present section we shall attempt a discussion of the significance of thls new .

datum, when taken together with the fact that the spectrum of 273B is flat over

the range from 200 Mc/s up to 8000 Me/s, and may indeed be flat over

the much wider range from _100 Mc/s up to _108 Me/s, i.e., up to _ 3 _

Suppose flr_t ._efollow'the conventional picture of the frequencT/spectrum

' being determined by the energy spectrum dv/_ _ of the electrons, the magnetic

field H being constant, and the electron energy being V mc2.' For a flat spectrum

we require n = I over the relevant range of V, this being determined by H ana

by the range of frequency over which we require the radio spectrum to be flat.

iii ii i i i , fl i i i , i i 1111, i i i ii i ,,ii i,
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To avoid synchrotron self-absorption, which would destroy the flat spectrum,

givi1T a .?.5 d_ law on a short time scale and a 2 d_ ]aw on a long time scale.

it is necessary that the emission rate shall not approach the 'black body'

value for a temperature given by setting kT equal to an appropriately chosen

energy value for the emitting electrons. Let r be the radius. Then we require

4_ r2 x 2_ 2 _ mc2 -1 )-l
C2 > 6xlO33 erg sec (c/s (4)

in the cosmological theory. The observed radio intensity over the flat

spectrum leads to @n emission requirement of 6xlO33 erg sec'l(c/s)"I in this

theory. In the local theory, on the other hand, it wo_Id be necessary to reduce

the ri@ht hand side of (4) by i0"'4if the characteristic distance of the quasi-

stellar objects is --i0 Mpc, and by lO"6 if the characteristic distance is

i Mpe. The effective kT in (4) is V mc2, where V is related to _ by

with H in gauss.

Condition (4) becomes more severe as _ is reduced, that is to say higher

values of V are needed, setting _ -_2 x lO8 c/s, the lowest val_ for which

the spectrum is known to be flat, taking r - l019 cm, gives V > _ 2 x lO4.

Accepting the least permissible value, V = 2 x lO4, and inserting in (5),

l°8 ' .togeLher with _ = 2 x c/s, we obtain H -_lO" _ gauss, a very low value. Now

the lifetime of an electron of energy V --2 x lO4 in a field of intensity

l0"7 gauss is very long, _ 3_1018 sec. This m,eaus that the rate of emission

at all frequencies up to _ -_2xlO8 c/s, i.e., l042 erg sec"l, can be only a

fraction, _ 3_10"]'9,of the energy of the whole reservoir of electrons. The

latter therefore must have a total energy of _ 3 x l060 ergs.

The problem now arises as to how such a vast energy can be contained within

a volume of a few cubic parsecs. Certainly not by a masmetic field as low as

J I _ _ I I , , , , , 1, ,.' ..... I
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i lO-7 gauss. The possibility arises, however, that the magnetic field is

" anchored to a cloud of ambient gas of total mass MI held in the gravitational

_, field of a central object of mass M2. The gravitational energy of the cloud

would be ,,, @.I1 M2/r and for there to be any possibility of stability we _u.3t

' have

' > erg. (6)' r

Greenstein and Schmidt (1964) have estimated (on the cosmological theory) a

• total mass of the,general order of 106 M@ for the gas cloud arotuud3C 273.

• Inserting this value for MI, (6) gives M2 > 1013 M®, r being again taken as
I'

lO19 cm. _"_%issee_ an impossible requirement. We arrive therefore at the eonclusioz_

_hat one or other of the following three possibiAities represents the true situation.
l

(i) the cosmological theory is incorrect, _:

._ (ii) some process other than synchrotron radiation is responsible for the

radio emission, _:'
t

"_ (iii) a radically different model of the synchrotron radiation from that used _'

above must be found. _

On thermodynamic grounds (ii) does not seem plausible to us, since a similar _,

argument to that given above must hold unless a process can be found that leads

to a higher effective value of kT than is given by the energies of relativlsti_

electrons, anC this seems most unlikely. Ln the remainder of this section we
¥

i

-hall disctm',sa d!ffi_rentmodel for the synchrotron radiation that seems capable

of fitting the data, except possibly the flatness of the spectrum in the infra-

-_ red.

The essential point in the following discussion is that the radio frequency

spectrum is controlled by variations in the m_gnetle intensity rather than by

the form of the electron energy distribution. First we show that t'hefrequency
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spectrum is flat if the follo_ing postLLlatesare satified:

(i) The elecL_, _i_ribu_on is 'o_tically thin'.

(2) The magnetic field Lutensity H depends on distance r from the center of

the object according to

H = H° (alr)n, (7)

where He, a, n are constants.

(B) The electron energy spectrum is everywhere the same. la

(4) _.heenerEy density, W, of the electron distribution depends on r according

to

w = w° (blr)m,

where We, b, m are constants.

(_) n + m = 3.

Fr_ (5)and(7)_ have

v T 4.106 V2 H° (a/r)n . (8)

The rate of emission by an individual eleztron of energy _ mc2 is

x H2, (9)
and, using postulates (3) and (4) it is not hard to se_ that the total

emission from all electrons of energy V race Luslde a sphere of radius "_-must

be of the form

r 2n m

_ ___a_ _ constantconstant r2 dr = 2n + m - 3 + constant. (I0)
r

.inview of postulate (I) this radiation escapes from the system.

Differentiating (lO), we see that the energy emitted by the electrons

of energy V mc2 _n the shell between r and r + dr is of the form

• dr
(constant) r2n + m- 2 "

- 21 -
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J Differentlatlng (8), we have

_ dr (12)d_ = _constan_) x n + 1 "
r

Eliminating dr between (ll) and (12) it is seen that the energy radiated in

• the frequency range _ to _ + d_ is of the form

(13)
(constant) x n + m - 3 '

r i

which is flat if n + m = 3. Next, we notice that, if post1_lates (2) and (4)

hold for large r, the spectru]_ (1B) applies down to small v, _ being related

to r by (8). And if postulates (2) and (4) hold for small enough r the

s_ctrum (13) applies up to large _. It follows that provided n + m = 3 the

spectrum from electrons of energy V mc2 is then flat over the whole range of

interest in _. If this is true for ar_-value of V it is true for all values of

V, and hence for any electron spectrum.
i

On physical grounds two cases are of immediate interest: .

(a) n = 3, m = O, corresponding to a dipole magnetic field and a uniform
G

e

electron energy distribution.
!

fb) n = 2, m = l, corresponding to a 'pulled out' field and an electron energy

distribution which falls off as i/r.

Case (a) corresponds to what might be erpected if the system is not embedded in _

a cloud of ambient gas. Case (b) is what might be expected if an external _!
cloud of ambient gas plays an important role in anchoring the system. We

discuss these cases in turn. l

(a) The Dipole Case u

To show this case is applicable to 3C 273B it is necessary that two con-

dltlons be reconciled:

(1) That (4) is satisfied down to _ -_200 Mc/s, otherwise postulate (i)

could not hold.

- 22 -
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(il) The energy density of the electron distribution must not exceed

the energy deusity of the magnetic field otherwise the electrons

wo_,_idexplode outward.

It will now be shown that these two conditions can Just be met.

The crucisd difference between the present discussion and that given at

the beginning of this section iE that the value of r to be inserted in (4) is

not independent of _. If we use the work of Dent to show that r must not

ex=eed 1019 cm we nust therefore be careful to use the appropriate _, _ 104 Mc/s.

Inserting these values in (4) gives

mc2 > ^,10-5 erg, (14)

a trivial requirement. For other values of 9 it is necessary to take account

of +_hefact that ,;_M, and r are related by I$). The simplest procedure is to

use (8) to eliminate r from (4) giving a condition of the form

n + 4 2(l-n)> (constant) x ° (15)

The constant in (15) can immediately be determined from (14) at _ = lO4 Mc/s.

Evidently the appropriate condition is

2(n-

9 being in o/s. This condition must hold down to 9 = 200 Mc/s. In the dipole

case n = 3, and (16) gives _mc 2 > _10 .4 erg, i.e., _mc 2 >--0.i Be,, an

entirely reasonable requirement.

We shall now show that requirement (il) is also satisfied provided _ is set

as low as we are permitted by requirement (i). This is the lower limit given

by (16), Mmc 2 _0.1 Bey, _ of order i02. In the following we use _ = i02,

and we carry through the calculation for 9 = 200 Mc/s, because the energy

requirements are moet severe at the lowest frequencies.

_ - 23 o
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To obtain "_= 200 Mc/s for %,= lO2 we require H _ 5 x l0-3 gauss. The

question arises as to what value of r should be associated with this mag_netic
J

intensity. From (8) with n = 3 we have v _ r-3 When 7 is fixed. In this

model we,are adopting i"= lO19 cm when _ = lO4 Mc/s, so for 9 = 200 Mc/s we

must take r = (50)1/3 x i019 cm, and this is to be associated with H _ 5wlO-3

: gauss. These values determine the constant of proportionality for the dipole

field, H = r"S, giving

H _ i0 r-3 gauss, (17)

in which r is in parsec.

The lifetime of an electron with 7 = 102 in a field of intensity 5_i0"3

gauss is --2_10II sec. Since the total emission of 3C 273B up to _ = 200 Mc/s

is _ 1042 erg sec"I i, in the cosmological theory, we evidently require an electro:,

2x1053 ireservoir with a total energy of _ erg. This is very.much less than was i
¢

required when the object was taken as haves the same radius, r-_ 1019 cm, at i_,

all values of v, in the calculation given at the beginning of this section • |
)

Io6OThe large differences between the present estimate and the value of order erg

obtained in the first investigation demonstrates the sensitivity of the situation i

to the assumed model. The electron energy density is now further reduced because !

the radius is (50)I x 101"9cm, instead of 1019 cm. The total volume of the

cm3,electron reservoir is therefore _ 2 xlO 59 _o that the electron energy

density is --lO-6 erg cm-3, the same as the energy density of the field with

strength 5 x 10-3 gauss. Hence requirement (li) is Just satisfied.

it is necessary to emphasize the sensitivity of this reeult to the chosen _

v_lue of 7. Adjusting the magnetic intensity to give a specified frequency,

200 Mc/s in the above discussion, the field varies with 7 as V"2, and the life-

time of the electrons varies _s _. Hence the total energy of the magnetic

-4
field varies as _ and the total energy of the electron reservoir (needed to
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give Lhe observed emission) varies as _3, so that the ratio of the total

magnetic field to the electron reservoir varies as -7 The value _ = f02

used above leads to a ratio of order unity. Changing _ by only a factor 2

would change the ratio a hundredfold.

Following from this, it is clear that the whole calculation is enormously

sensitive to the value chosen for r at lO4 Mc/s. Avoidance of synchrotron

self-absorption at any specified frequency sets the lower limit for y, of the

form _ > (constant) r-2, as can be seen from (4). Adjusting the magnetic

intensity to give ,the specified frequency we again require H = y-2 _ r4. The

total magnetic ener_ therefore varies as rll r3a factor entering for the

volume. The lifetime of an individual electron again varies as _3 and so does

the total energy of the electron reservoir necessary to give the observed
f

-O

emission. Hence the total energy of the electron reservoir varies as r , sad

the ratio of the total magnetic energy to the total electron energy varies as

r17. in the present model the radius at _ = 200 Mc/s is greater than it was

in the calculation given at the beginning of this section by the factor (50)1/3.

When raised to the 17th power this increase of r alters the energy ratio by

N lOlO, which explains why the magnetic field is just able to restrain the

electron reservoir from exploding, whereas in our first calculation it was

utterly unable to do so.

The sensitivity of these factors makes it clear that one must be cautious

in asserting that the new work of Dent (1965) makes a synchrotron explanation

of the radio emission of 3C .27SB impossible - this on the cosmological theory.

Small changes in the basic parameters, particularly the radius, greatly affect

the outcome or'the calculations.

(b) The Case n = 21 m=I

Inserting n = 2, _ - 200 Mc/s in (16), we see that the condition set by

- 25 -
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the absence of synchrotron self-absorption is 7 mc2 > _ 5 x !0-5 erg, a some-

what weaker requirement than before, again permitting _ -_102. With this value

of 7 we again require H -_5 x 10-3 gauss to give emission at _ = 200 Mc/s. We

: again note that our calculations of energy requirements are carried out at the

lowest frequencies because the requirements are more severe at low frequencies

than at high frequencies. Because H is now proportional to r"2 we have

H _ r"2 gauss (18)

. in place of (17).

The balance 02 the electron energy requirement and of the total magnetic

: energy are again much the same as befoi__, and the same remarks apply to the

' sensitivity of the ratio of these quantities. In the present case, however,

we can contemplate that the total magnetic energy falls below the total energy

of the electron reservoir, because now we can call on the inertia of an ambient

gas cloud to restrain the electron distribution. The latter is again of order

1053 erg, and in the notation used at the beginning of this section we only

require ._

MI i
O ---_-- > --1053 erg (19)

instead of the much more severe condition in (3). Again using lO6 M® for M1, !

we only require M2 > _ lO7 M®' which can certainly be satisfied. !

To understand the choice m = l, it is possible to argue that the electron

distribution has built up to the maximum that can be restrained by the ambient

gas - i.e., that G M1 M2/r is close to the lower limit set by (19). Any •

further build up would lead to high energy electrons escaping into space. Now

the simplest assumption concerning the ambient gas is that the density is

uniform, in which case the gravitational potential energy per unit volume falls

J -i

as r , provided the interior mass is greater than the exterior mass. The

- 26 -
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-1
restraining effect of the ambient gas would fall off as r in such a picture,

-1
and the maximum permitted electron density would also fall as r , i.e., m = i.

The above discussion seems to us to show that a synchrotron origin for

the flat spectrum of 3C 273 is certainly possible in the cosmological theory,

at any rabe for frequencies up to I0" Mc/s. A question does arise, however,

as to how far the spectrum can continue to be flat. We shall examine this

question, by way of concluding the present section.

Synchrotron Emission at High Frequencies

Our model requires the frequency spectrum to be controll_d by the variation

of H with r, not by the electron energy spectrum. It was this change from the

usual picture, in which H is take_ constant and the frequency spectrum is con-

trolled by the electron distribution, that permitted the effective radius r of

the emitting xegion to increase as the frequency _ was lowered. For consistency,

we must continue to adopt the same model at frequencies upward of lO4 Mc/s.

Quantitatively, this means that we must continue to calculate for the same

values of _, viz _-_ lO2, that led to a consistent situation at the lowest

frequencies. A difficulty now arises that the electron lifetimes become very

short. At _ = 200 Mc#, we had r -_ (50)1/3 x lO19 cm, and we obtained _u

electron llfe_ime of _ 2 x l0ll sec. Taking the case n - 2, m = 1 as being

more favorable than the dipole case at very high frequencies, we have
z

_ H _ r"2 for fixed y. Numerically,

_" 2xi08 _-501/3r I019_2 _ 3"1047 c/s (20)

for r in cm. The lifetime T of an electron of fixed _ varies with H as H"2•

4
i.e., as r . N_merically,

_ _ 2_i011 (-T_L--T_4 _ i028 v"2 sec, (21)
x

.... 27 -
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. for v in c/s. At v = i0 lO c/s, T -_ 108 sec. Althoug_h short, this is still

permissible. However, raising v to 1014 c/s_ the highest frequency to which

the f_at spectrum of 3C 273B may veil extend, leads to the absurd]_ short llfe-

• time of N 1 sec.

'A reasonable condition on • is that I"must not be appreciably less than

_' r/c. Setting

_- -.r ~- lo28 "',,"^, (22)

we can eliminate r between (20) and (22), givJng _ -_ lOlO c/s, and this is

the highest frequency to which the flat spectrum can re_:onabl,y be expected to

extend. The model evidently runs into difficulty over the extension of the
D

flat spectrum to frequencies higher than this. A way around the difficulty

would be to go back to the uniform field case at frequencies, above lO lO c/s -

i.e., to argue that H is app.roximately constant for r leF,s than _ lO19 cm.

We could rely on H _ r"2 l019 i0lO, r > ~ cm _o explain the spectrum for v < _ c/s,

along the lines discussed above, and on H = constant, r < ~ " cm With an _

electron energy spectrum dv/V to explain the flat spectrum for v > -- 1ClO c /s. _.
&

This is a somewhat artificial device but the possibility cannot be excluded, i

We have concentrated completely in this section on attempting to find a I

: model which will account for the radio frequency observations of Dent, and have i_not tried to relate this to the models for the optical object which have been

i proposed by Greenstein and qo__=Idt (1964), Oke (1965), and Shklovsky (1964).

It may be possible to _..concile this type of model with that required to

explain the llne strengths and continuum in the optical region, though the need o

for a magnetic field varying with distance from the center in a volume which
&

probably overlaps with that required to explain the llne emission may require

some revision of these models.

- 28 - i
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IV. QUANTITATI_.rECO]{SIDERATIONS iN THE LOCAL I_0RY

The self-absorption condition (4) is ve-y much weakened in the local

theory. Write x for the factor by which the distance of 3C 273 is reduced.

Then a factor x"2 must be inserted on the right hand side of (4), and this

is N l0-4 if the characteristic distance of the quasi-stellar objects is

lO Mpc and is _ lO-6 if the characteristic distance is N 1 Mpc. The con-

dition for lack of self-absorptlon ceases then to be of serious account in

building a model of the synchrotron emission of 3C 273B.

It would be possible to return to the usual theory, with H constant mud

the frequency spectrum depending on the form of the electron energy distri-

bution. The latter would have to be of the form dv/V. In our -,ic-_,however,

the general model developed in the preceeding section, with the frequency

spectrum determined by the variation of H with r, gives so convenient an

explanation of the flat spectrum that we prefer to adhere to it even though

there is now no strict necessity to do so. This model is very.plausible for

e compact object in which H must be expected to vary with the distance r from

the center.

We proceed by increasing the im96rtant y values by the factor y, y > l,

andby reducing r by the factor z, z > l, i.e., _ is _lO 2 y. From what was

said in the preceding section concerning the dependence on y and on r of the

ratio of the total magnetic energy to the total energy of the electron reservo._r,

it is clear that this z_tio will be much reduced below unity if y_ z are

appreclabiv greater than unity. However, this is not a serious matter provided

the electron distribution is restrained from explosion by the inertia of ar

ambient gas cloud. We then require

GM1 M2 > ElectrorAReservoir, (23)r

- 29 -
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and we consider the case n = _, m = i, on the same basis as before. Electron

•_ y3, y3.lifetimes at fixed 9 are increased by i.e., by This increases the

electron reservoir by y3. On the other hand the electron reservoir is re-

_ duced by x"2 becmlse the required emission is less by this factor. Remembering

that r is reduced by z, it is clear therefore that former values for r, and

for the electron reservoir, can be inserted in (23) provided the factor

x_y 3 z-I is Jmcluded on the right hand side. Hence the condition that the

electron distribution does not exploda outwards is given by using the values

r -_ (50)I/_ x i019,cm, _ 1053 erg for the electron reservoir, leading

#

immediately to

_ M2 > ~ io13x-2y3 z-1 (2'0

in which _, M 2 are in MO. Fon_:rly we had x = y = z = i, _ _ 106 _%,

M2 > lOT M®. The estimate _ c_lO6 M® was taken from the work of GreensSeln

and Schmidt (1964) in which 3C 273 was assumed to be at a cosmo]oglcal distance. i

This estimate must be reduced in the local theory. We defer e, d_scusslon of _ ,

the values that _ and M2 might have in the local theory to a later stage in

the argument. Our immediate purpose is to see whether the.difficulty arrived

at in the preceedlng section, that the frequency spectrm cannot be maintained

flat to 9 much above lOl0 c/s, can be overcome in the local theory.

-- • Equation (20)and (22)must nowbe changed,(_j)because at fixed 9 the

distance r is reduced by z, so that

-_ 3_i047 z"2 (25)
r2

and (22) because the elec'_ronlifetimes are now increased by _3. Thus _il!

_ io28_-2y3. (26) __C ±

Eliminating r between (25) and (26) again gives the highest frequency up to

which the spectrum cam be flat, viz

i
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lolO z2/3 (27)

For y, z large enough _he frequency given by (27) can be increased to the

value of order 1014 c/s indicated by observation. However, such choices for

y, z must be checked age.inst (24) that they lead to permissible values for

MI, M2. Also the self-absorptlon must be kept negligible. The latter is
l

easily verifled.

Condition (4) is altered by the factor x"2 y z2 placed on the right hand

side, so we require

-2 z_.x y < l (28)

f_r (4) to remain satisfied. It would be reasonable to set y _ i0, raising

the important electron energies to _ i Bey. With z also of order i0, (28) is

satisfied both when the characteristic distance of the quasi-stellar objects

is i0 Mpc aud when the characteristic distance is i Mpc, giving x"2 _ i0-4 and

10.6 respectively. '

With y = z = lO, the spectrum is flat up to _ -_l013 c/s, perhaps not

quite high enough but certainly not in gross disagreement with observation.

Condition (24) remalus to be satisfied, however° When x"2 -_lO"4, it would

not be unreasonable for the central _ass M2 to be set as high as 106 M®, in

which case (24) requires M1 > lO5 M®. Although this condition is satisfied

by the estimate of Greenstein and Schmidt, this estimate must now be traduced.

A mass of ambient gas as large as this cannot be present within a radial distance

of _ (50)1/3 x lO19 z"l (_ 3xlO18 cm for z -_10) if the gas is largely ionized,

because self-absorption due to free-free transitions would occur, leading to

a 2 d_ law at the low frequencies instead of the flat spectrum. If the gas

were mostly "argonizedthis difficulty would not arise of course. Even so, the

necessary mass seems high.

The case x"2 _ lO"6, corresponding to objects at'a characteristic distance

of _ 1 Mpc, is somewhat more favorable. With y = z = i0, (24) then gives

. -r i .
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lO9.
g

MI M2 >_ If M2 can still be taken as high as lOv M® the co.nditlon

M1 > _ lO3 M® could perhaps be satlsfie_.

We conclude this aspect of our discussion with the conclusion that

extension of the flat frequency _ectrum to 1014 c/s, or ewm to.1013 c/s,

still presents difficulties, although the difflcultles are not so severe in the

• local theory as they are in the cosmologlcsl the_,ry. For example, the choice

z _ 30, Y = 3 gives a flat spectrum up to _ lO1 -_c/s and _24) only requires

M1 _2 > % 107 in the case x -_10-6 .

V. - THE HED-SHI_ APPARENT MAGNITUDE HELATION IN COSMOLOGY AND IE THE LOCAL THEORY

In this section we shall be concerned with the red-shift - magnitude i

relation to be expected in the local theow, assumi_ng the quasl-stellsr objects
:_

t

to be isotropically distributed with respect to the Galaxy. First, however, _:

we outline the derivation of this relation in orthodox cosmology. Taking the ' _

cosmical constant as zero, Einstein's _quations are, in the "_sualnotation _.

3

_2 +k

�R2: o. (so)

The line element is

ds2 'dt2 _ R2(t) i dr2 r2 d_2 ] �'

in which t is the time, with a unit such that c = i. The apparent bolometric

magnitude of an object of fixed intrin=ic emission is related to the red-shift t,
!

and to the coordinate distance r b.g

Apparent Luminosity = Constant (32)

" /_° r2 (i + z)2 ' r--

- 32- ,.... ..
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whe re

R
Ak o

illwhic'h R is the value of E at reception and R(t) is the value at emission.o

All o'c.;-.c_shave effectively the same moment of meception but different

objects in general have different values of R(t). _ density p is re_ated

to Rby

p = po_...,. (34)

where Po is the cdsmological density at the present moment of reception.

It is always possible to change the unit of length, changing t, R by a scale

factor, but keeping the r coordinate unchanged. Choose a scale factor such

that R satisfies
o

!

T O Po No

so that (29) t_kes t_ s._a_llfied fo1_

,9 i

_- . k =_ . (36)

The constant k can be O, or _.l. The work of Schmidt (1965) on the red-

shifts of quasi-stellar radio sources, has suggested that, if the sources are

cosmological, the case k = 1 may gi-,e the most suitable model. We then have

--- (37)
It remains" to relate r with z = A_/k, so that the right hand side of (32)

can be expressed as a function of z. ._his step is aehieve_ by noticing that

= 0 along a light t_k, giv_

dr dt
--- . --, k :i. (9))
1.r?. R

using (rr),

- 33-
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L ......

r _r r dR
- I r'------ ' (39)

o i-r 2 R

which integrates to

I

sin-I r = 2 [sin-I R ½ - sin-I R2). (40)
O

Here we use the fact that r = 0 for the observer. The limits of the integrals

in (39) are arreaged so that both are positive. It may be noted that r is

associated with R and 0 with R . This inversion is brought about through the
0

minu_sis in (381. Fr_ (40),

r = 25 _o_ (i- 2R)- R_ (i- 2 . (_)

Substituting R = Ro/(1 + z) gives the required relation between r and i + z.

However, in general the apparent luminosity depends on R° as,well as or 1 . z, - ,
?

not mere]/;as a multiplicatlve factor but in a complicated way. That is to say,

the right hand side of (32) cannot in general be reduced to a simple product

f (Ro) g(1 . z), although in a certain special case it can be so reduced.

A parameter qo is introduced through the definition
.2 !

7

i_
Applying (30) for k = I and for the present moment, 1

- ½u--7*o' (43)

i:.J!.
so that _ ;

4

(2a 1) (/_2)°- = i. (_4) i_

Should q happen to be unity at the present moment, (I_2)o = 1. Hence, from !_:

(37), Ro = 0.5. Substituting this value in (41)_ we obtain the simple result !o'y

r = i - 2_ = -- (45 xi +Z I ....

L
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and (32) gives

Apparent Luminosity = constant (46)2
Z

This is the case which has been cot,sideredto give the best fit to the red-

shift data of Schmidt (1965). We again note that (46) applies to the bolo-

metric luminosity. If the contribution of a fixed frequency range, or a fixed

wave-length range, is required, appropriate factors Jm i 4 z have to be

included on the right hand side of (46), 1 + z for a fixed frequency range,

(1 + z)-1 for a fixed wavelength range.

We proceed now to compare (46) with what is to be expected in the local
l

theory. Suppose a n,_,berof objects to be emitted from the observer's position

at t_e t = O. Again choose the time unit so that c = 1. Light emitted ._t

time t from an object moving at speed v reaches the observer at time t (1 + v).

For observation at a particular moment of time wm therefore require

constant
t = i + v ' (47)

sad the distance of the object at emission is

_ (48)vt = constant x 1 +----_

Hence for objects all with the same intrinsic emission we have

2

 +vhApparent Luminosity = constant x j • (;9)
(i+ z)2 v

The factor (i + z)"2 arises from the red-shift and number effects, which apply

here the same as in the cosmological theory. The factor [(i + v)/v]2 is Just

the inverse square of the distance at the moment of emission - we calculate n_w

for simple Euclidean space. In flat space we have the following relation

between z and v,

" 35-
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Ellminati_g v between (49) and (50),

2

! Apparent Lumlnosity = constant (i + z) . (51)
z2 (i+ z/2)2

The local theory differs from the cosmological theory with k = i, qo = I,

in that the apparent luminosity is increased by the extra factor (1 + z)2/(1 + z/2)2.

Schmldt (1965) discusses the intrinsic luminosities which 9 quasl-stellar t

sources must have (in the cosmological theo_,, qo = i) in order to explain

the apparent luminosities. A similar calculation in the local theory would

yield intrinsic va!ues less than those calculated by Scl_nldt,by the factor

(1 + z/2)2/(i + z)2. This has the effect of bringing the intrinsic values very

close together for all of the sources except 3C 273, which then stands out as

about 5 times brighter than the others.

The present considerations apply directly to the local theory of Terrei!, --

•

in which the quasi-stellar objects are considered to have been expelled by our

own Galaxy. For the case of objects expel].ed from NGC 5128 she __v._+"_+_^-is

more complicated, however, because our point of observation is offset from the

point of ejection. The relation (51) should apply to a good approximation for

objects with v _ c, since such obJect_ will be most distant, e.go, i0 Mpc or i

more, and the offset effect is not then very important. But for slowly moving

objects, at distances comparable to that of NGC 5128 itself, variations by a

moderate factor from (51) are to be expected. It is possible that 3C 273 is

such a case, since for this object z = 0.158.

If the objects are all of the same linear size, their apparent angular

diameters are inversely* proportional to their distances at the moment of

emission - i.e., proportional to (i + v)/v, to
2

x .. (51)
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In the cosmological theory angular diameters fo_'objects of fixed linear

, size are inversely proportional to r R(t). For the case qo = i, the factor

r is given simply in terms of z by (45). Also R(t) = R_l + z),so that in

this theory angular diameters are proportional to

+ z)2. (52)(l
Z

Angular diameters are smaller in the local theory by the factor (i + z/2)-I.

' The problem of angular diameters is of course of critical importance.

No object showing short term fluctuatlcns of radio emission can have more

than a very small angular diameter in the cosmological theory. Taking lO par-

secs for the radius of 3C 27]3, the angular diameter should be about 0.008".

This is much less than values of N O.i_ given by Hazard, Mackey, and Shimmins

(1963) and by Scheuer (1965). These determ__nations would rule out the cosmo-

logical theory if it could be confirmed that a diameter of order 0.5 referred

to a single compact object. Also Scheuer gives an experimental profile of

0.3" which is so close to 0.5" that it seems permissible to regard the

present situation as uncertain. We simply note that the angular diameter for

a_ object of radius 1 parsec at a distance of 1 Mpc is N 0.4", so that appre-

ciable angular diamete1_ are to be expected if the quasi-stellar objects are
,!

very local. Values of N 0.04 would correspond to the case in which the objects

are at characteristic distances of _ lO Mpc.

VI. CONCLUSIONH

This paper has been concerned with the possible origins of the star-llke

-, objects which are neither stars nor normal galaxies. Of the _ lO5 objects

which are probably present down to 19m spectra in which Doppler shifts can be

measured have so far been o;btained for fourteen objects, and redshifts have
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been obtained in all of these. The situation as to their origin is rather

similar to that which existed 50 years ago when the spiral nebulae were also

'7

a great mystery. About the same number of Doppler shifts had been measured,

_ largely by Slipher, and there was considerable confusion as to whether they

_ were of galactic or extragalactic origin. As is well known conclusive proof

• of their extragalactic nature came in the next decade.

With the discovery of the redEhifts of the quasl-stellar radio sources,

the most natural theory was to assume that these were also objects at cosmo-

logical distances _nd with the exception of the proposal by Terrell this is

j what has been generally assumed. However, in this paper we hav_ attempted to

discuss the physical nature of the objects, assuming either that they are at

cosmological distances or that they are extragalactic but local at distances

typically of 1 - lO Mpc.

There are a number of observational programs which may eventually indicate

which of these hypotheses is correct. In concluding we shall list some of
,!

these.

• (1) The model that we have proposed to account for the form of the spectrum

and the variability at high frequency observed by Dent in 3C 2"_3Bis Just able

to give rise to a flat spectrum out to about lO4 Mc/s if the object is at a

cosmological distance, Detailed observations out into the infra,redwi].lenable

this model to be tested further.

(2) As has been emphasized by many a•uthorsdetailed and accurate studies of

3C 273 and other star-like objects in all possible frequency ranges are badly

needed.to determine the time scales over which they vary.

i_ (3) The angular diameter of the radio source 3C 273B is obviously of critical

importance in deciding whether it is a very distant object. This queBtion has

been disc_msed at the end of Section IV. If the object can be proved to have

- 3B-

I rJ

1965026885-040



an angular diameter _ 0':.5and also is variable indicating a dimension of a few

light years and is truly a single compact object then it must be local.

(4) Identification of more bright star-like objects may enable a significant

test to be made as to whether or not they are associated with clusters of

galaxies.

(5) If the objects are in general at cosmological distances then the bulk of

them fainter than 16m should have redshifts z > I. If this is found to be the

case the local origin hypothesis will not b_ disproved. However, if many of the

faint star-like objects are found to have small redshifts z g O.1 the model

proposed by Sandage cannot be retained. The compact object discovered by Arp

(1965) which is distinguishable from a star on a good dir_ct plate has an

apparent magnitude of 17_.9and z = 0.004. On the local hypothesis this would

probably be an object ejected from the Galaxy.

(6) The detection of objects with blue shifts _ }uld establish the correctness

of the local explanation of such objects. On e picture described here NGC 5128

is a probable source, while som_ may come from o_t_own _ _v. We should not

expect blue shifts from objects of galactic origin, but as _s discussed in :

Section IIIa search for such objects bearing in mind that they may have come
r

from NGC 5128 is urgently required. Since this is a southern galaxy

(_ = 13h 22m4, 8 = -_2° 46' (1950)) searches in its vicinity must be carried

out fro_uthe Southen_ Hemisphe re.

(7) On _;nelocal theory depending on the time which has elapsed since objects

were eJecr,ed from NGC 5128, we shall expect to see some assyuunetry in the distri-

bution of _he objects on the sky. While it may be difficult to detect such

i assynuetry _y optical method_, it is important that the distribution of the radio
T

sources of sn_allangular diameter over the sky be investigated, since on the

local theory that fraction of the radio sources associated with quasi-stellar

objects are local.

1 I
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(8) If the ejection of coherent objects from the nuclei of galaxies is common°

place it may be possible to detect t_em about galaxies such as M 82 in which

e_loslve events are known to have t_ken pla_e comparatively recently. It is

interesting that an optical identiflc_tion of a quasi-stellar object of 19m

_,_Itha radio source very close to NGC '_51 (which w_s originally identified
4

as the source) has recently been made (Sandage, Veron, and Wyndham 1965). As

these authors have pointed out, NGC 4651 has a very peculiar jet-like structure

and on the local hypothesis the 19m object has been ejected frc,m that galaxy.

We are indebted to _ll_ Sandage for giving us a copy of his manusc:'ipt

in advance of publication an_ also for the use of his house where the bulk of

_his paper was written We also wish to acknowledge the many interesting dis-

cussions we have had with Margaret Burbidge, Willy Fowler, and Maarten Schmidt.

This work has broensupported in part by a grant from the National Science

Foundation and "_r NASA through Contract NsG-357.
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